- Virtual Machine(이하 VM)에도 CPU가 있지만 실제 VM내의 게스트OS에서의 발생하는 모든 프로세스들은 VM이 아닌,
실제 호스트의 CPU에서 처리가 이루어지며, 게스트OS에서 발생하는 프로세스들(CPU Process)은 VMkernel의 'VMM'을 통해 실제 호스트의 CPU로 프로세스 처리가 가능하도록 전달해줍니다.
(VMM은 'Virtual Machine Monitor'이며 VM에서 실행되는 실제 CPU명령을 전달해줍니다, 하나의 VM에 하나의 VMM이 반드시 생성되며, 개별 VM들이 서로 충돌이나 간섭없이 작동될 수 있도록 격리시키져는 역할도 하게 됩니다.
이 때, CPU에게 명령을 전달해주는 방식으로는 두 가지가 있습니다.
1. Binary Translation
--> VM내의 게스트OS에서 CPU에 직접 명령을 전달해야하는 Privilege code들을 'Binary Translation' 기법을 통해 중간에 가로채어 에뮬레이션화 해서 접을 조종하게 됩니다.
2. Direct Execution
--> RIng 0접근이 필요없는 사용자 레벨(Ring 3)에서의 코드들은 'Direct Execution(직접 실행)' 기법을 사용하게 됩니다.)
- VMKernel은 모든 VM에게 발생하는 CPU Process들은 최대한 균등하게 분배할 수 있도록 전체 물리적인 CPU 리소스를 스케줄링하며 시분할 방식을 통해 프로세스를 처리하려고 합니다.
- 멀티코어 프로세서
: 코어 개수가 많으면 많을소록, 더 많은 가상 CPU를 사용할 수 있게됩니다. vSphere서버에서 각 코어는 하나의 Logical Processor단위로 인식이 되며,듀얼코어 CPU의 경우 2개의 Logical Processor단위로 인식하게 되며, 그 위에 Virtual CPU를 할당하여 사용하게 됩니다.
- 하이퍼쓰레딩
: 하이퍼쓰레딩이란 OS가 물리적인 하나의 CPU를, 두 개의 논리적인 CPU처럼 인식하여 동작하게 해주는 기술입니다.
vSphere에서도 하이퍼쓰레딩을 지원하게 되며, 기능이 설정되었다면, 모두 Logical Processor로 인식하게 됩니다.
- DVFS(Dynamic Voltage and Freqyency Scaling)
: CPU의 Clock rate와 전력을 동적으로 조정하여 전력비용을 절감 시킬 수 있는 기술입니다.
설정에 따라 CPU가 갖고 있는 최대 Clock rate를 사용할 수 도 있으며, CPU 사용량에 따라 vSphere서버 스스로 동적으로 Clock rate를 변경할 수 있습니다.
- CPU Affinity
: VM의 Virtual CPU가 보는 호스트의 CPU는 항상 같을 수는 없습니다.
첫 번째 명령을 0번 코어가 처리했다면, 두 번째 명령을 4번 코어가 처리할 수도 있습니다, 하지만 특정 VM에서 일어나는 CPU 명령을 고정적으로 처리할 수 있게 CPU를 지정해주는 기능을 말합니다.
주의해야 할 사항은, Affinity 설정 시 기존CPU 개수에 +1를 해주는 것이 좋습니다. 그리고 하이퍼쓰레딩을 사용하는 경우에는 CPU번호를 떨어뜨려서 사용해야 합니다 (Ex, CPU0-CPU4)
왜냐하면, 하이퍼쓰레딩의 경우 물리적 한개를, 논리적 2개로 인식을 합니다. vSphere서버가 CPU를 인식할 때는 물리적 CPU내의 논리적 CPU순서입니다.(물리CPU0 - 논리CPU0, 물리CPU1 - 논리CPU-1....등)
Affinity설정 시, CPU0-CPU1를 하게 된다면 논리적으로 보았을 때는 별 문제 없어보이나 물리적으로 본다면 실질적으로 코어
한개만을 사용하는 것이 되기 때문입니다(하이퍼쓰레딩을 사용시 Affnity설정할 때의 이야기입니다).
- Full Virtualization, Paravirtualization
1. Full Virtualization, 대표로는 VMware의 ESX서버입니다
여기서 작동되는 게스트OS는 자신이 하이퍼바이저 커널에서 작동되고 있다는 것을 모릅니다. 단순히 자신에게 물리적인 장치들이 장착되어 있으며 나 혼자만이 하드웨어를 독점하여 사용하고 있다고 생각할 뿐입니다.
이와 같이 스스로 착각을 하기 때문에, CPU의 경우 VMware에서 'Binary Translation'과 'Direct Execution' 과 같은 기법을 통해 CPU 명령을 중간에서 변환시켜야 하는 일종의 오버헤드가 발생하기 때문에 성능저하가 발생할 여지가 존재하게 됩니다.
2. Paravirtualiztion, 대표로는 Zen 서버입니다.
Full Virtualization과는 조금 다릅니다, 최초엔 하이퍼버이저에서 인식할 수 있는 특별한 시스템 콜 명령을 가지고 있는 게스트OS여야만 작동이 가능했습니다. 이 방식을 통해 직접 CPU에게 명령을 전달하여 오버헤드를 줄일 수 있으므로, Full Virtualization보다 좀 더 하드웨어에 근접한 성능을 뽑아낼 수 있었으나, 게스트OS의 커널이 수정되어야 하는 불편함이 존재했습니다.
리눅스의 경우는 시스템 콜 명령이 커널 내부에 포함되어 작동이 되었지만(커널 2.6이상) 윈도우의 경우 그렇지 않았습니다.
그러나 Intel VT-x , AMD-V 기술이 나오게 되면서 이러한 부분이 해결이 되었습니다.
VMM이 Ring -1로 가게되면서 게스트OS가 제약없이 RIng 0의 하드웨어 접근권한을 갖게 되므로, 윈도우에서도 커널 수정없이 바로 작동이 가능하게 된 것입니다.
'IT > IT 개념' 카테고리의 다른 글
Windows 성능 옵션(프로그램 vs 백그라운드 서비스)을 이해하다 (0) | 2016.09.27 |
---|---|
VT-D 란 무엇인가? (0) | 2016.07.07 |